Imaging the activity and localization of single voltage-gated Ca(2+) channels by total internal reflection fluorescence microscopy.
نویسندگان
چکیده
The patch-clamp technique has enabled functional studies of single ion channels, but suffers limitations including lack of spatial information and inability to independently monitor currents from more than one channel. Here, we describe the use of total internal reflection fluorescence microscopy as an alternative, noninvasive approach to optically monitor the activity and localization of multiple Ca(2+)-permeable channels in the plasma membrane. Images of near-membrane Ca(2+) signals were obtained from >100 N-type channels expressed within restricted areas (80 x 80 micro m) of Xenopus oocytes, thereby permitting simultaneous resolution of their gating kinetics, voltage dependence, and localization. Moreover, this technique provided information inaccessible by electrophysiological means, demonstrating that N-type channels are immobile in the membrane, show a patchy distribution, and display diverse gating kinetics even among closely adjacent channels. Total internal reflection fluorescence microscopy holds great promise for single-channel recording of diverse voltage- and ligand-gated Ca(2+)-permeable channels in the membrane of neurons and other isolated or cultured cells, and has potential for high-throughput functional analysis of single channels.
منابع مشابه
A Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy
Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...
متن کاملImaging single-channel calcium microdomains.
The Ca(2+) microdomains generated around the mouth of open ion channels represent the basic building blocks from which cytosolic Ca(2+) signals are constructed. Recent improvements in optical imaging techniques now allow these microdomains to be visualized as single channel calcium fluorescence transients (SCCaFTs), providing information about channel properties that was previously accessible o...
متن کاملNanodomain Ca2+ of Ca2+ channels detected by a tethered genetically encoded Ca2+ sensor
Coupling of excitation to secretion, contraction and transcription often relies on Ca(2+) computations within the nanodomain-a conceptual region extending tens of nanometers from the cytoplasmic mouth of Ca(2+) channels. Theory predicts that nanodomain Ca(2+) signals differ vastly from the slow submicromolar signals routinely observed in bulk cytoplasm. However, direct visualization of nanodoma...
متن کاملOptical single-channel recording: imaging Ca2+ flux through individual ion channels with high temporal and spatial resolution.
Developments in imaging technology now enable visualization of the functioning of individual ion channels in living cells: something previously possible only by the electrophysiological patch-clamp technique. We review techniques that track channel gating via changes in intracellular [Ca2+] resulting from openings of Ca(2+)-permeable channels. Spatial and temporal resolution are optimized by mo...
متن کاملStructural rearrangements in single ion channels detected optically in living cells.
Total internal reflection fluorescence microscopy was used to detect single fluorescently labeled voltage-gated Shaker K(+) channels in the plasma membrane of living cells. Tetramethylrhodamine (TMR) attached to specific amino acid positions in the voltage-sensing S4 segment changed fluorescence intensity in response to the voltage-driven protein motions of the channel. The voltage dependence o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 86 5 شماره
صفحات -
تاریخ انتشار 2004